
https://tinyurl.com/2021-elixir-cwl

Introduction to the Common Workflow Language

Michael R. Crusoe @biocrusoe
CWL Project Leader #CommonWL https://orcid.org/0000-0002-2961-9670 All slide text is

licensed CC-BY-4.0

https://tinyurl.com/2021-elixir-cwl
https://twitter.com/biocrusoe
https://twitter.com/search?q=%23CommonWL
https://orcid.org/0000-0002-2961-9670
https://spdx.org/licenses/CC-BY-4.0

https://tinyurl.com/2021-elixir-cwl

Background

● Computational workflows are routinely used for large scale analyses
in many fields

● Replication, validation, and extension of scientific results
are crucial for scientific progress

● Many workflows systems exist but few of the systems have
○ adoption, active user community, and sustained development support
○ the ability to painlessly port or extend their workflows to

another system or platform
● Needed a multi-lingual workflow description standard

between systems and for cross-vendor portability

https://tinyurl.com/2021-elixir-cwl
https://s.apache.org/existing-workflow-systems

https://tinyurl.com/2021-elixir-cwl

The CWL Project is a boutique SDO, part of Software
Freedom Conservancy

The CWL project supports open consensus-based standards for
command line data analysis workflows and tools.
Specifically, the project supports the

○ pre-standards process by providing a neutral place of convening
to discuss, propose and test ideas about command-line tool based
workflow standards and related topics.

○ standardization process by stewarding the development and
delivery of standards in accordance with the Open Stand principles.

○ post-standards life cycle by (1) promoting the released standards,
(2) developing and maintaining related training and tools, and by
(3) tracking deficits and other post-standardization feedback.

https://tinyurl.com/2021-elixir-cwl
https://open-stand.org/about-us/principles/
https://sfconservancy.org/news/2018/apr/11/cwl-new-member-project/

https://tinyurl.com/2021-elixir-cwl

What is Common Workflow Language (CWL)?

● Open standard for describing analysis workflows and tools
○ Started as a grassroots effort by developers at BOSC codefest in 2014
○ Community based standards effort, not a specific software package

○

● Defined with a schema, specification and test suite
○ Reference implementation (cwltool) along with academic and

commercial production implementations
● Portable and scalable across a variety of software and

deployment environments
○ Supports the use of containers (e.g. Docker, Singularity)

● Designed to meet the needs of data-intensive science to improve the
FAIRness of their workflows

○ CWL now used in Bioinformatics, Medical Imaging, Astronomy, High Energy Physics,
Machine Learning, ... GeoSpatial?

https://tinyurl.com/2021-elixir-cwl
https://www.open-bio.org/wiki/BOSC_2014

https://tinyurl.com/2021-elixir-cwl

CWL: Two Standards in One

● CWL Command Line Tool Description standard: how to run a single
tool; what inputs are required and allowed, what outputs are made
and how to get them.

● CWL Workflow Description standard: connecting these
CommandLineTools along with sub-Workflows into a workflow
graph

Can use just the CommandLineTool CWL standard or the full
combination of both.

https://tinyurl.com/2021-elixir-cwl
https://www.commonwl.org/v1.2/CommandLineTool.html
https://www.commonwl.org/v1.2/Workflow.html

https://tinyurl.com/2021-elixir-cwl

CWL Enables Execution Portability

Authors of CWL
tool and workflow

descriptions

Backends supported by various F/OSS CWL
implementations

Local execution on Linux, macOS, and MS Windows
via the CWL reference implementation (cwltool)
and Docker/uDocker/Singularity/podman/...

https://tinyurl.com/2021-elixir-cwl
https://github.com/indigo-dc/udocker/

https://tinyurl.com/2021-elixir-cwl

CWL Technical Details

● CWL file contains a tool or workflow description
● Human readable

○ Written in YAML or JSON
○ Many optional fields to increase readability and reusability

(i.e. “doc”, “label”, “SoftwarePackage”, “format”)
● Input/outputs are explicitly stated
● Designed to be modular and easy to reuse components

○ CWL Workflows are graphs made up of CWL tool descriptions
● Designed for high-throughput (grid and cloud) computing

○ Distribute steps over many compute nodes
○ Data movement handled by the CWL-aware workflow engine

● Encourages well-marked vendor/user extensions
○ Supporting progress without hurting portability

https://tinyurl.com/2021-elixir-cwl
http://yaml.org/
https://www.commonwl.org/v1.2/CommandLineTool.html#SoftwarePackage

https://tinyurl.com/2021-elixir-cwl

CWL Encourages Progressive Enhancement

Both describe the same tool.

The 2nd description is more helpful.

Dynamic Resource
Requirements

Community Maintained
File Format Identifier

https://tinyurl.com/2021-elixir-cwl

https://tinyurl.com/2021-elixir-cwl

CWL Data Model

The basic unit is a command line tool.

CWL Types: strings, numbers, file/directories, or records that combine these; or
arrays of any of these types. Union and optional types too.

Files can have a further specialization via the “format” field: a URI that identifies
the file type

iana:application/geo+json
edam:format_3016

CWL does not dictate the source of these format identifiers, each community of
users should define their own.

https://tinyurl.com/2021-elixir-cwl
https://www.commonwl.org/v1.2/CommandLineTool.html#CWLType
https://www.commonwl.org/v1.2/CommandLineTool.html#CommandInputRecordSchema
https://www.commonwl.org/v1.2/CommandLineTool.html#CommandInputArraySchema
https://www.commonwl.org/v1.2/CommandLineTool.html#File
https://www.iana.org/assignments/media-types/application/geo+json
https://edamontology.org/format_3016

https://tinyurl.com/2021-elixir-cwl

CWL Technical Details cont.

● Workflow graph can be exported as linked-data (RDF/JSON-LD)
● Supports provenance exporting using existing standards and

ontologies: W3C Prov, IETF BagIt, wfdesc, wfprov
● CWL’s object model enables a variety of infrastructure-specific

optimizations
○ Cost and/or data-location aware scheduling
○ (User overridable) caching of results
○ Streaming in-/out- of object stores; or between steps

● Hundreds of conformance tests are used to ensure portability
independent of vendor

● Workflow validation catches many sneaky syntax errors before runtime

https://tinyurl.com/2021-elixir-cwl
https://w3id.org/cwl/prov/
https://www.w3.org/TR/prov-overview/
https://tools.ietf.org/html/rfc8493
https://w3id.org/ro/2016-01-28/wfdesc
https://w3id.org/ro/2016-01-28/wfprov/

https://tinyurl.com/2021-elixir-cwl

Data locality with CWL

Input and output files are modeled in CWL as rich object with identifier (URI/IRI)
and other metadata.

Platforms that understand CWL can use these identifiers to send compute to
near the location of data.

In combination with the resource matchmaking this can conversely result in data
being sent to specialized compute resources as configured by the operator (or
machine learning)

https://tinyurl.com/2021-elixir-cwl
https://tools.ietf.org/html/rfc3987

https://tinyurl.com/2021-elixir-cwl

Proposed enhancement to CWL data model

input value restrictions / validations · Issue #764

Refinements to the existing CWL types have been proposed, but need
implementation before they can be voted on.

string: Regular expressions, string sets
int/long: Integer intervals, integer sequences, integer sets
float/double: (Real) intervals, integer intervals, real sets

Goal is to catch validation errors sooner, produce more helpful (G)UIs,
and prevent execution of workflows/tools that doomed to fail

https://tinyurl.com/2021-elixir-cwl
https://github.com/common-workflow-language/common-workflow-language/issues/764

https://tinyurl.com/2021-elixir-cwl

How to extend CWL for your own needs?

CWL 💓 community/vendor extensions!

1. Do let the CWL community know how your needs aren’t being met.
2. Experiment with alternative syntax via additional Requirements. Fork

the CWL reference runner (cwltool) or another CWL implementation to
implement your ideas.

3. Make sure that your extensions are namespaced, so that other
systems can still read your CWL documents.

4. Let the CWL community know about your progress as you go.
5. If it makes sense, make a formal proposal for possible inclusion in a

future version of the CWL standards!

https://tinyurl.com/2021-elixir-cwl
https://cwl.discourse.group/
https://github.com/common-workflow-language/cwltool
https://www.commonwl.org/v1.2/Workflow.html#Extensions_and_metadata
https://github.com/common-workflow-language/common-workflow-language/issues/new

https://tinyurl.com/2021-elixir-cwl

CWL v1.2 released 2020-08-10!

3 new features: workflow level conditionals, abstract operations, absolute
paths for container inputs

20 cleanups and clarifications of corner cases in the specifications

Forward compatibility via the `cwl-upgrader` script or the reference CWL
runner

Available today in the CWL reference runner (cwltool), Arvados, and
toil-cwl-runner. Support in additional commercial providers is forthcoming.

https://tinyurl.com/2021-elixir-cwl
https://groups.google.com/d/msg/common-workflow-language/aTKeUHEskSk/ZcKwqf4QBQAJ
https://www.commonwl.org/v1.2/Workflow.html#Changelog
https://www.commonwl.org/v1.2/Workflow.html#Operation
https://pypi.org/project/cwl-upgrader/
https://pypi.org/project/cwltool/
https://arvados.org/release-notes/2.1.0/
https://github.com/DataBiosphere/toil/releases/tag/releases%2F5.0.0

https://tinyurl.com/2021-elixir-cwl

Participating in the CWL Community

● https://www.commonwl.org/

● Getting Started
○ User guide: https://www.commonwl.org/user_guide/

● Support, Community and Contributing
○ Forum: https://cwl.discourse.group/
○ Chat: https://gitter.im/common-workflow-language/home
○ GitHub: https://github.com/common-workflow-language/
○ Social Media: @commonwl & #CommonWL

● Weekly video chat

https://tinyurl.com/2021-elixir-cwl
https://www.commonwl.org/
https://www.commonwl.org/user_guide/
https://cwl.discourse.group/
https://gitter.im/common-workflow-language/home
https://github.com/common-workflow-language/
https://twitter.com/commonwl
https://twitter.com/search?q=%23CommonWL
https://groups.google.com/forum/#!forum/common-workflow-language-videochat-invites

https://tinyurl.com/2021-elixir-cwl

Common Workflow Language

Is a vendor neutral open standard

Is a community-first project

Designed with an open and transparent governance

Improves interoperability and portability

Increases reusability and reproducibility

Enables parallelization and scale

Is supported by an ecosystem of tools, libraries, and
editor plugins

https://tinyurl.com/2021-elixir-cwl
https://www.commonwl.org/#Software_for_working_with_CWL

https://tinyurl.com/2021-elixir-cwl

Thank you!

Questions?

https://www.commonwl.org

https://tinyurl.com/2021-elixir-cwl
https://www.commonwl.org

https://tinyurl.com/2021-elixir-cwl

Backup slides..

https://tinyurl.com/2021-elixir-cwl

https://tinyurl.com/2021-elixir-cwl

Linked Data & CWL

● Hyperlinks are common currency
● Bring your own RDF ontologies for metadata
● Supports SPARQL to query

Example: can use the EDAM ontology to specify file formats and reason
about them:

“FASTQ Sanger” encoding is a type of FASTQ file

https://tinyurl.com/2021-elixir-cwl
http://edamontology.org/

https://tinyurl.com/2021-elixir-cwl

Gigascience, Volume 8, Issue 11, November 2019, giz095, https://doi.org/10.1093/gigascience/giz095
The content of this slide may be subject to copyright: please see the slide notes for details.

Figure 2: Levels of provenance and resource sharing and their applications.

https://tinyurl.com/2021-elixir-cwl
https://doi.org/10.1093/gigascience/giz095

https://tinyurl.com/2021-elixir-cwl

Gigascience, Volume 8, Issue 11, November 2019, giz095, https://doi.org/10.1093/gigascience/giz095
The content of this slide may be subject to copyright: please see the slide notes for details.

https://tinyurl.com/2021-elixir-cwl
https://doi.org/10.1093/gigascience/giz095

https://tinyurl.com/2021-elixir-cwl

Timeline
2014 Bioinformatics Open Source Conference CodeFest:
4 software engineers & a whiteboard

2015: CWL “draft-2” version, commercial vendor (SBG) releases product in December.

2016: CWL v1.0 released

2017: CWL v1.0.1 and v1.0.2 released.
Now 4 public implementations

2018: IBM released their CWL implementation for LSF.

2019: CWL v1.1 released

2020: CWL v1.2 released with workflow conditionals, work on CWL v1.2.1 and beyond
commences

https://tinyurl.com/2021-elixir-cwl

