

OpenEBench: the ELIXIR benchmarking platform

Asier Gonzalez (asier.gonzalez@bsc.es)

Jose Maria Fernandez (jose.m.fernandez@bsc.es)

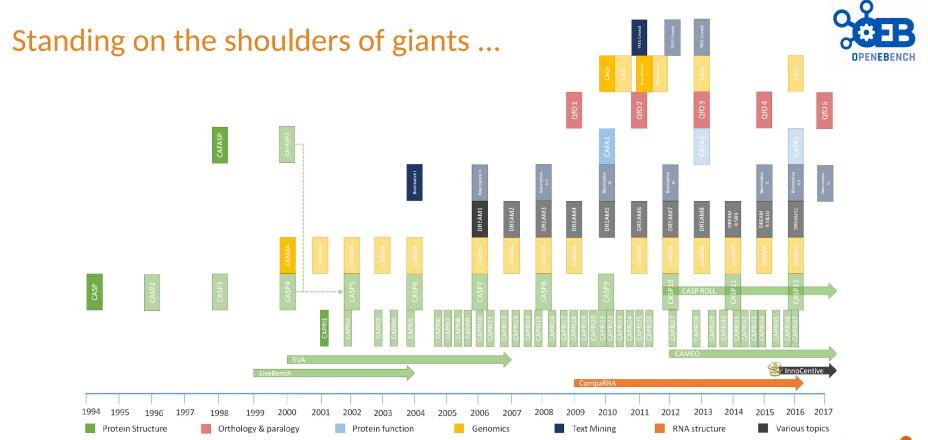
Laura Rodriguez-Navas (laura.rodriguez@bsc.es)

Barcelona Supercomputing Center (BSC), ELIXIR-ES

30-11-2021, ELIXIR Workflow Workshop

Index

- Why benchmarking?
- OpenEBench approach to reproducible benchmarking
 - OpenEBench platform
 - Levels of engagement
 - OpenEBench benchmarking process
 - Hands-on exercise 1
- WfExS: A workflow execution service
 - How does WfExS fit in OpenEBench?
 - RO-Crate and WorkflowHub
 - Hands-on exercise 2



Community-driven benchmarking

- Face similar challenges and want to collaborate for advancing in the understanding of specific scientific problems.
- Guarantees a more complete benchmarking.
- Useful for a wider group of people: software developers and users.
- Follows the principles of *Open Science* to foster reproducibility, data sharing...

The ELIXIR Tools Platform

To support efforts around software packaging & containers, e.g. Bioconda/ BioContainers, and support sustainable integration into bio.tools and OpenEBench

bio.tools, a
discovery portal
for bioinformatics
software
information,
providing curated
description of
tools and data
services

OpenEBench, an infrastructure providing services for hosting scientific benchmark activities and technical monitoring of bioinformatics tools and services

= Galaxy

To drive the development of execution platforms (e.g. Galaxy) and ensure integration with bio.tools, OpenEBench, and workflows using CWL

Raise software quality and sustainability, by producing and promoting software best practices and developing training activities

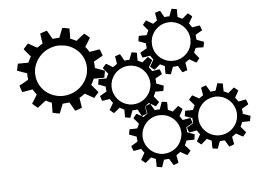
Tools Interoperability, guidelines and resources for guaranteeing Platforms integration within the ELIXIR Tools Platform Ecosystem, with other Platforms in ELIXIR and beyond.

Go!

Scientific Benchmark

Technical Monitoring

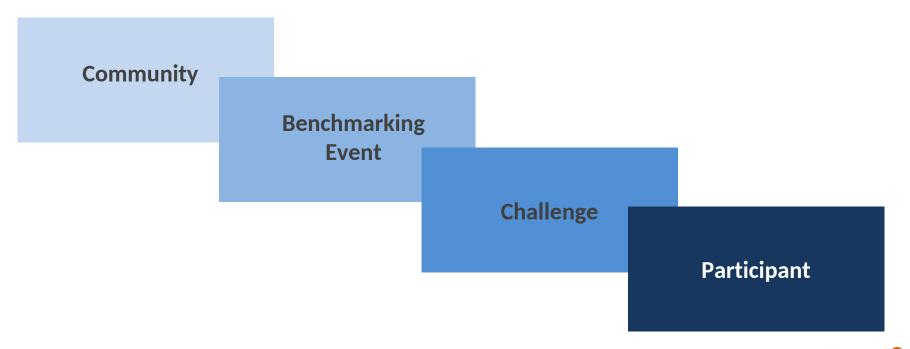
https://openebench.bsc.es





Datasets

Evaluation Metrics

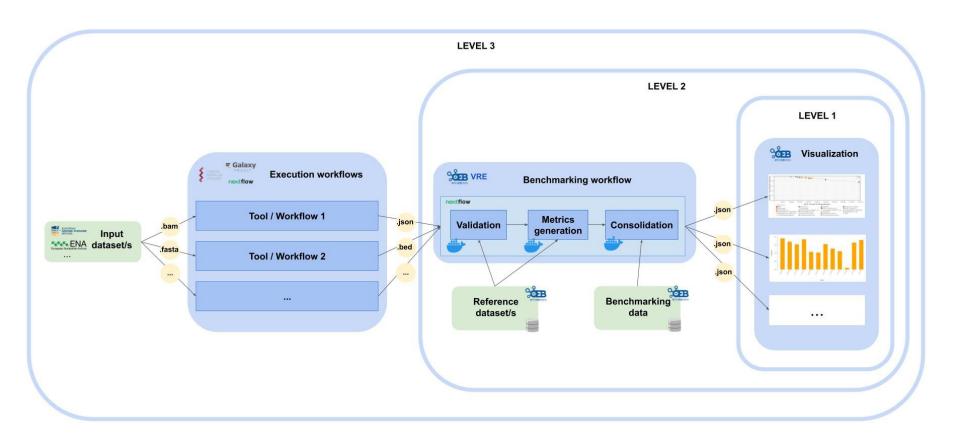


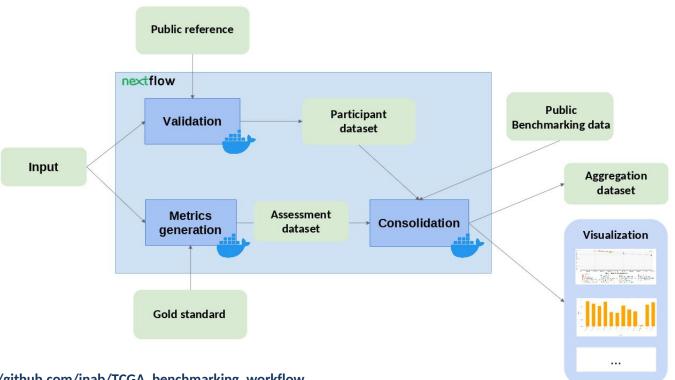
Results Interpretation

OPENEBENCH

How OpenEBench is organized

Levels of engagement




OPENEBENCH

Benchmarking process

OPENEBENCH

Benchmarking workflow

HANDS-ON EXERCISE 1

Running the TCGA benchmarking workflow

TCGA Cancer Driver Genes benchmarking description

- The Cancer Genome Atlas consortium organized a benchmarking event to compare the performance of cancer driver gene identification tools in 33 cancer types [see <u>Bailey et al</u>, <u>2018</u> for more info]
- 8 tools have published their results in OpenEBench [OEBCOO1]
- You have a tool called "my gene predictor" and want to compare the results against the public ones

TCGA Cancer Driver Genes benchmarking organization

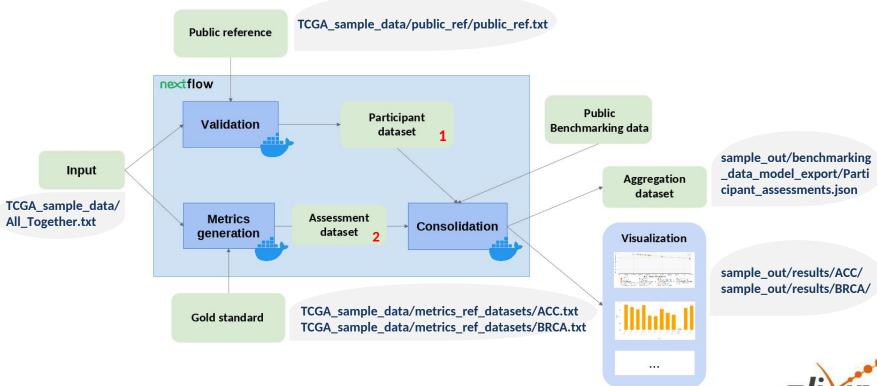
The Cancer Genome Atlas (TCGA) Community **Benchmarking** 2018 PanCancer data - Driver Genes **Event** prediction benchmark Adrenocortical Carcinoma (ACC) Challenge Breast Invasive Carcinoma (BRCA) **Participant** my gene predictor

Running the workflow from the CLI

For detailed information please refer to the **<u>README in the workflow's GitHub repository</u>**

Requirements:

- Git
- Docker
- Nextflow ≥ 19.10.0 (it requires Bash ≥ 3.2 and Java ≥ 8 and ≤ 17)


Download version 1.0,8 of the workflow from <u>GitHub</u>:

- > git clone https://github.com/inab/TCGA_benchmarking_workflow.git
- > cd TCGA_benchmarking_workflow/
- > git checkout 1.0.8 -b 1.0.8

TCGA Cancer Driver Genes benchmarking workflow

- 1) sample_out/participant_out/validated-participant-data.json
- 2) sample_out/assessment_out/Assessment_datasets.json

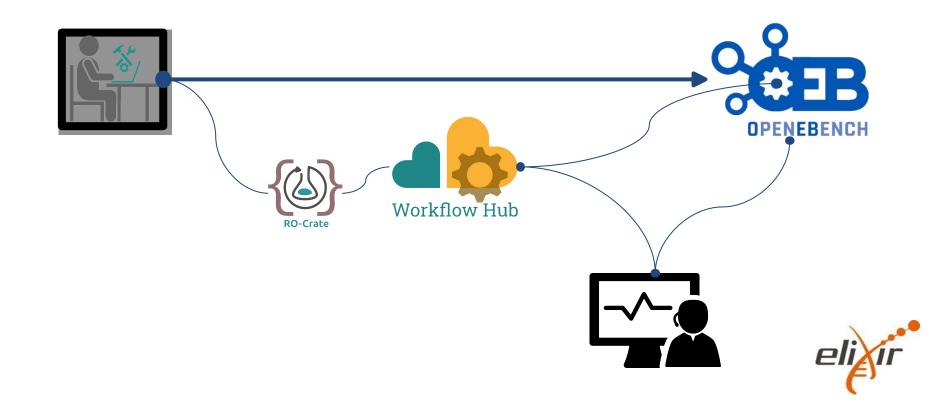
Running the workflow from the CLI

Let's do the magic!

> nextflow run main.nf -profile docker

Now it's time to explore the results

Running the benchmarking in the **OpenEBench Virtual Research Environment (VRE)**


Run same workflow in OpenEBench VRE

https://openebench.bsc.es/vre

Engagement level 3: Participants' tools execution

OPENEBENCH

Engagement level 3: Participants' tools execution

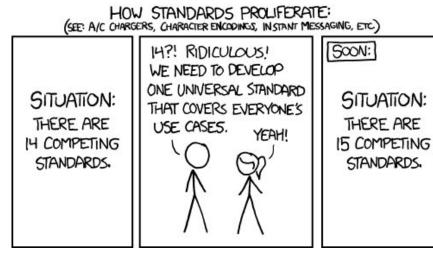
The **W**orkflow **Ex**ecution **S**ervice backend engine aims to fetch a workflow from a TRS-enabled WorkflowHub instance, fetch the inputs (which should be reachable through URLs) and workflow execution engine, and execute the workflow in a secure way.

Engagement level 3: Participants' tools execution

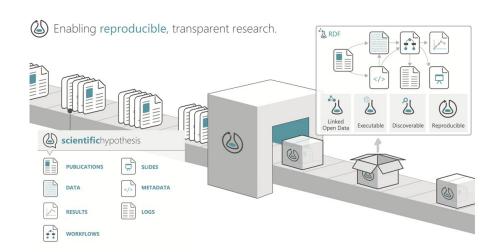
The **W**orkflow **Ex**ecution **S**ervice backend engine aims to fetch a workflow from a TRS-enabled <u>WorkflowHub</u> instance, fetch the inputs and workflow execution engine, and execute the workflow in a secure way.

Compatible with **RO-Crate** and GA4GH cloud workstream specifications (TRS/WES/TES):

- Materialize Nextflow and CWL workflows from WorkflowHub.
- Materialize remote repositories that contain the materialized workflows.
- Materialize inputs and reference data to launch workflows.
- Setup Nextflow and CWL engines (currently working with <u>Nextflow</u> and <u>cwltool</u>).
- Validate workflows and materialize their containers (Docker and Singularity).
- Launch the workflows in an execution environment.
- Create execution provenance.
- Generate RO-Crate from execution provenance.


Engagement level 3: Participants' tools execution

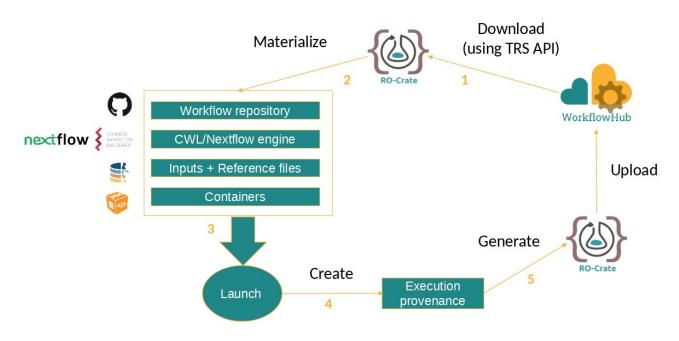
... still, we need a back-end engine that be able to interpret RO-Crate and execute any workflow contained within.


... we are not developing (or proposing to develop) the 300th workflow manager.

Engagement level 3: Participants' tools execution

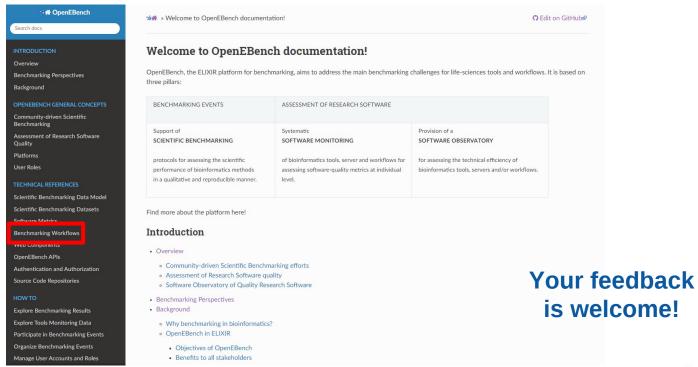
RO-Crate is a mechanism to bundle digital objects semantic metadata.

It offers the flexibility of being a single


digital object that encapsulates relevant metadata and data (or link to them). The target for workflow executions are the workflow and execution provenance: software containers, input and output datasets (along with their public ids), etc...

Engagement level 3: Participants' tools execution

Demo case on the execution of the selected workflow https://asciinema.org/a/452404
Back-end engine installation https://asciinema.org/a/452311
Rootless singularity (advanced) https://asciinema.org/a/452320
Workflow execution files (old) https://asciinema.org/a/385268


HANDS-ON EXERCISE 2

Running TCGA workflow with WfExS

Want to know more about OpenEBench?

https://openebench.readthedocs.io/en/latest/

ACKNOWLEDGEMENTS

Salvador Capella Gutierrez

Laia Codó

Txell Ferret

Dominik Brüchner

Josep Ll. Gelpi

Dmitry Repchevsky

Esther Vendrell

Reach out to us at openebench-support@bsc.es

Thank you